

научно-технический центр "Электронная аппаратура"

Извещатель охранный линейный радиоволновый для периметров

"ПРИЗМА-1/100НЕ"	ОМЛД. 08.001-19	
"ПРИЗМА-1/300НЕ"	ОМЛД. 08.001-20	
T) / 1070 001 01000010 11		

ТУ 4372-001-24009810-14

Изготовитель: НТЦ "Электронная аппаратура" СЕРТИФИКАТ СООТВЕТСТВИЯ №TC RU C-RU,АЛ32.В,07576

РУКОВОДСТВО ПО МОНТАЖУ И ЭКСПЛУАТАЦИИ ОМЛД. 08. 001-04 РЭ

Россия

СОДЕРЖАНИЕ

1. ВВЕДЕНИЕ	3
2. НАЗНАЧЕНИЕ	3
3. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	3
4. УКАЗАНИЯ ПО МОНТАЖУ И ЭКСПЛУАТАЦИИ	5
5. КОМПЛЕКТ ПОСТАВКИ	8
6. УСТРОЙСТВО И РАБОТА ИЗВЕЩАТЕЛЯ	9
6.1 Принцип работы	9
7. МАРКИРОВАНИЕ И ПЛОМБИРОВАНИЕ	16
8. ТАРА И УПАКОВКА	17
9. МЕРЫ БЕЗОПАСНОСТИ	17
10. ПОРЯДОК УСТАНОВКИ	17
10.1 ТРЕБОВАНИЯ К ПОДГОТОВКЕ УЧАСТКА И РАЗМЕЩЕНИЮ БЛОКОВ ИЗВЕЩАТЕЛЯ 10.2 УСТАНОВКА НА ЗАГРАЖДЕНИИ ИЛИ СТЕНЕ 10.3 УСТАНОВКА НА СПЕЦИАЛЬНЫХ СТОЙКАХ. 10.4 УСТАНОВКА НА СТОЛБЕ (ТРУБЕ) 10.5 УСТАНОВКА ВДОЛЬ ЗАГРАЖДЕНИЙ И СТЕН. 10.6 ПОДКЛЮЧЕНИЕ БЛОКОВ. 10.7 ПОДКЛЮЧЕНИЕ КАБЕЛЯ СВЯЗИ.	
11. ПОДГОТОВКА ИЗВЕЩАТЕЛЯ К РАБОТЕ	23
11.1 ПОДГОТОВКА ИЗВЕЩАТЕЛЯ 11.2 ЮСТИРОВКА ИЗДЕЛИЯ 11.3 РЕГУЛИРОВКА ЧУВСТВИТЕЛЬНОСТИ 11.4 РЕГУЛИРОВКА ШИРИНЫ ЗО С ПОМОЩЬЮ КВЗ-2Т 11.5 ПРОВЕРКА ИЗВЕЩАТЕЛЯ	
12. РЕГЛАМЕНТ ТЕХНИЧЕСКОГО ОБСЛУЖИВАНИЯ	25
13. ОБСЛУЖИВАНИЕ КОНТРОЛИРУЕМОГО РУБЕЖА	26
14. ПРАВИЛА ХРАНЕНИЯ И ТРАНСПОРТИРОВАНИЯ	27
15. ХАРАКТЕРНЫЕ НЕИСПРАВНОСТИ И МЕТОДЫ ИХ УСТІ	РАНЕНИЯ 27

1. ВВЕДЕНИЕ

- 1.1 Настоящее руководство предназначено для изучения правил монтажа и эксплуатации периметрового извещателя «Призма-1/100НЕ» ОМЛД. 08. 001-19, «Призма-1/300НЕ» ОМЛД. 08. 001-20. СЕРТИФИКАТ СООТВЕТСТВИЯ № №ТС RU C-RU.AЛ32.B.07576.
 - 1.2 В руководстве приняты следующие обозначения:
- извещатель «Призма-1/100НЕ», «Призма-1/300НЕ»; БПРМ блок приемный; БПРД блок передающий; ЧЗ чувствительная зона; ЗО зона обнаружения; КМЧ комплект монтажных частей; ППК прибор приемно-контрольный; RTp контрольный резистор, необходимый для работы ППК; ТР (ШС) линия (шлейф сигнализации) для контроля состояния извещателя «Дежурный режим»/«Тревога».
- 1.3 **Чувствительная зона** это замкнутая объемная область в форме эллипсоида вращения с большой осью, совпадающей с условной прямой линией, соединяющей центры передающего и приемного блоков извещателя. Поперечные размеры ЧЗ ограничиваются 5-й зоной Френеля и различными поверхностями, расположенными ближе 5-й зоны от оси.
- 1.4 **Зона обнаружения** это часть чувствительной зоны сходной формы, которая расположена «внутри» чувствительной зоны и может совпадать с ней при значительном увеличении чувствительности. При уменьшении чувствительности ЗО уменьшается в сечении, притом, что ее длина остается неизменной и определяется расстоянием между БПРД И БПРМ.

2. НАЗНАЧЕНИЕ

- 2.1 Извещатель предназначен для контроля прямолинейного участка охраняемого рубежа и выдачи тревожного извещения при вторжении нарушителей в 3О.
- 2.2 ЗО имеет форму эллипсоида вращения с большой осью, совпадающей с условной прямой линией, соединяющей передающий и приемный блоки изделия.
- 2.3 В зависимости от решаемых задач, 3О может формироваться вдоль поверхности земли на открытых участках рубежа или над заграждением.
- 2.4 Извещатель предназначен для совместной работы с аппаратурой, фиксирующей переключение контактной пары или изменение величины сопротивления выходной контрольной цепи (в дежурном режиме сопротивление контрольного резистора, включенного последовательно с любым из выводов «сухой» контактной группы выходного реле БПРМ).

3. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- 3.1 Извещатель обеспечивает непрерывную круглосуточную работу.
- 3.2 Извещатель обеспечивает создание объемной 3О протяженностью:

«Призма-1/100НЕ»	от 3 м до 100 м
«Призма-1/300НЕ»	от 5 м до 300 м

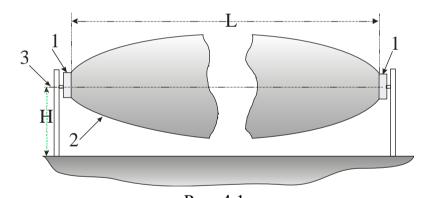
Протяженность 3О определяется как расстояние между передающим и приемным блоками (от минимального до максимального).

- 3.3 Извещатель обеспечивает формирование, с вероятностью не менее 0,98, сигнала ТРЕВОГА и соответствующую индикацию на контрольной панели БПРМ:
- при перемещении в зоне обнаружения нарушителей, движущихся в положениях «в рост» или «согнувшись» со скоростью от 0,1 до 10 м/с.
 - при попытке доступа к органам управления и индикации БПРМ;

- при отключении напряжения питания (формирование непрерывного сигнала ТРЕВОГА без контрольной индикации).
 - 3.4 Период наработки на ложное срабатывание составляет не менее 1000 ч.
- 3.5 Извещатель обеспечивает работоспособность в условиях умеренного и холодного климата, исполнение УХЛ категория 1 по ГОСТ 15150-69, но при температуре от минус 60 до плюс 70° С (при предельных температурах от 60° С до + 85° С).
 - 3.6 Извещатель обеспечивает работоспособность при :
- скорости ветра до 30 м/с;
- воздействии осадков в виде дождя до 30 мм/час или снега до 10 мм/час (в пересчете на воду);
- воздействии солнечной радиации;
- высоте неровностей не более \pm 0,3 м на отрезке контролируемого участка в местах примыкания ЧЗ к поверхности земли;
- высоте снежного покрова определяемой вычетом 0,4 м из высоты установки блоков БПРД и БПРМ извещателя. Например, высота снежного покрова может достигать 0,5 м, при высоте установки блоков 0,9 м или 0,7 при высоте установки 1,1 м и т. д.;
- высоте травяного покрова до 0,3 м;
- перемещении в 3O мелких предметов или животных с линейными размерами не более 0,2 м.;
- воздействии УКВ излучения в диапазоне 150-175 МГц мощностью до 50 Вт на расстоянии не менее 5 м;
- проезде вне ЧЗ транспортных средств;
- воздействии электромагнитных помех по ГОСТ Р 50009-2000 (импульсов напряжения в цепях питания, электростатических разрядов и др.).
- 3.7 Электропитание блоков извещателя осуществляется от источников постоянного тока со значением напряжения в пределах от 10 В до 36 В.
- 3.8 Максимальный ток, потребляемый извещателем по цепи постоянного тока, не превышает 40 мА, а максимальная мощность не превышает 0,5 Вт.
- 3.9 Извещатель обеспечивает выдачу в контрольную цепь сигнала ТРЕВОГА продолжительностью 5⁺¹ сек. Сигнал ТРЕВОГА формируется путем изменения величины сопротивления выходной контрольной цепи от значения менее 35 Ом до значения более 1000 кОм (размыканием «сухой» контактной группы выходного реле). При измерении величины сопротивления выходной контрольной цепи, напряжение не должно превышать 39 В, а ток должен ограничиваться на уровне не более 100 мА. На контрольной панели БПРМ имеются светодиоды, позволяющие наблюдать сигналы, кнопка для включения режима юстировки и поворотный регулятор для установки чувствительности, что обеспечивает удобство при настройке и проверке извещателя.
- 3.10 Извещатель имеет встроенную одноуровневую защиту от наведенного напряжения во всех внешних цепях протяженностью до 250 м, подключенных к зажимам БПРМ, во время грозовых или других электрических разрядов. Защита входных цепей включается при превышении входных напряжений значения ~39...40 В. Несмотря на это, при длине присоединенных к зажимам БПРМ линий свыше 250 м необходимо или самостоятельно установить в распредкоробках дополнительные устройства грозозащиты или использовать распредкоробки БМ, БД или КСУМ с гарантированной грозозащитой.
 - 3.11 Габаритные размеры блоков БПРМ, БПРД извещателя без узлов крепления

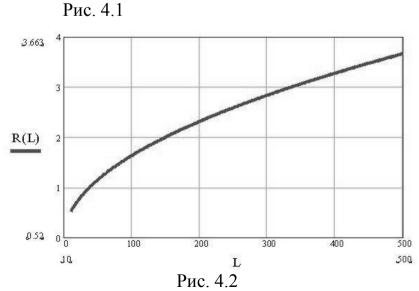
«Призма-1/100НЕ»	145×145×45 мм
«Призма-1/300НЕ»	205×205×45 мм

3.12 Масса блоков БПРМ и БПРД, не более


«Призма-1/100НЕ»	1,5 кг
«Призма-1/300НЕ»	3 кг

- 3.13 Срок службы блоков извещателя не менее 10 лет.
- 3.14 Извещатель не содержит драгметаллов.
- 3.15 Повышенная стойкость извещателя от воздействия влаги и пыли:
- применение коррозионно-стойких материалов материалов, устойчивых к воздействию атмосферной коррозии. Корпуса и метизы (болты, винты, гайки, шайбы) извещателей изготовлены из нержавеющей стали;
- применение усиленных защитных покрытий увеличенное гальваническое антикоррозионное покрытие металлических деталей. Дополнительное лаковое защитное покрытие электронных компонентов и модулей специальными компаундами.

4. УКАЗАНИЯ ПО МОНТАЖУ И ЭКСПЛУАТАЦИИ


- 4.1 Извещатель размещается на рубеже охраны на местности или в помещении.
- 4.2 БПРД «1» (см. рис 4.1) и БПРМ «1» располагаются на оси 3О навстречу друг другу таким, образом, чтобы 3О блокировала контролируемый участок. ЗО «2» имеет форму эллипсоида вращения с большой осью, совпадающей с условной линией «3» соединяющей центры БПРМ и БПРД «1», установленных на высоте «Н» от поверхности земли на расстоянии «L» друг от друга.

Примечание. Все расстояния, кроме специально оговоренных, в дальнейшем будут приводиться в метрах.

- 4.3 БПРД и БПРМ размещаются на выбранной высоте (рекомендуется 0,8...1,4 м) от поверхности земли.
- 4.4 Ширина ЧЗ зависит от расстояния между БПРД и БПРМ и определяется по ориентировочному графику, см. рис. 4.2.

На графике обозначено: *L*—расстояние между БПРД и БПРМ (ось абсцисс);

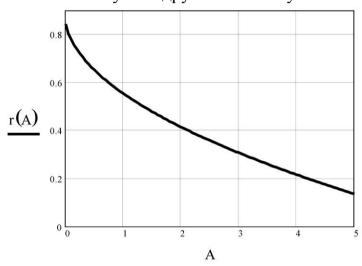
R(L)-половина ширины 43 в середине участка.

Примечания: 1) ширина ЧЗ увеличивается к середине и уменьшается при приближении к блокам:

- 2) ширина 30 зависит от расстояния до отражающих предметов (заграждений, стен зданий и т. п.) и установленных порогов и может быть как меньше, так и больше приведенной на рис. 4.2.;
 - 3) Все размеры по умолчанию приводятся в метрах.
- 4.5 При выборе высоты установки необходимо учесть, что, при приближении к БПРД (БПРМ) вдоль оси, 3O «отрывается» от земли как показано на рис. 4.1, 4.3. На рис. 4.3 показана зависимость расстояния (r(A))» от нижнего края ЧЗ до поверхности земли при приближении к БПРД (БПРМ) на расстояние «А». При расчете принято, что центры блоков находятся на высоте 0,9 м от поверхности земли, а сама поверхность ровная на указанном расстоянии от блоков. При нулевом расстоянии от указанных блоков ширина 3О равна ширине блоков. В случаях другой высоты установ-

ки блоков, необходимо сделать линейную поправку на изменение высоты, т. е. сдвинуть ось «А» вверх при меньшей высоте или вниз – при большей.

4.6 При размещении 3О вдоль стен, заграждений или др. сооружений (за исключением «радиопрозрачных»), 3О не должна касаться их поверхностей. На рис. 4.4 представлены поперечные сечения (относительно оси «1») 3О на различных удалениях от БПРД или БПРМ,


установленных на высоте «Н»: «2» - в середине протяженного контролируемого участка; «3» - на расстоянии 2...3 м от блоков; «4» - вблизи блоков. Расстояние «В» от блоков до сооружения должно быть не меньше половины ширины 3О в середине участка.

4.7 Приближение «оси» 3О к отражающим заграждениям на расстояние меньшее половины ширины 30 может приводить к интерференции радиосигнала и при раскачивании заграждения или при изменении отражающих свойств, может приводить к

значительным колебаниям уровня принимаемого сигнала, т.е. к значительному снижению соотношения сигнал/помеха. Поэтому при проектирова

нии и монтаже необходимо учитывать ширину ЧЗ (см. график на рис. 4.2).

4.8 На части контролируемого участка 3O «2» (рис. 4.4) имеет форму усеченного поверхностью

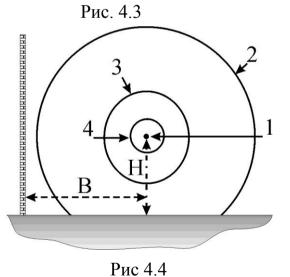


Рис. 4.5

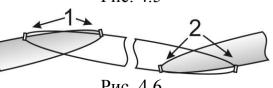


Рис. 4.6

TPYTIIIA KOMITAHIIII «OMETA-MIIIKPOJIISAIIH»

земли эллипсоида вращения. Однако при приближении к БПРД(БПРМ) ЗО «отрывается» от земли и необходимо прикрыть образовавшиеся «проходы» с помощью ЗО смежного участка, как показано на рис. 4.5, 4.6 (вид сверху) и 4.7 (вид сбоку), либо с помощью физических преград (ограждений, колючей проволоки и др.). На рис. 4.5,

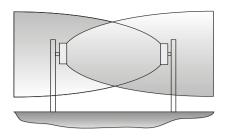
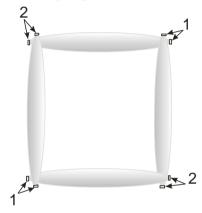
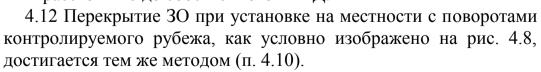


Рис. 4.7

- 4.7,...4.10 цифрами обозначены «1» БПРД, «2» БПРМ.
- $4.9~\rm Длина$ блокируемого извещателем участка должна быть не более $100~\rm M$ и не менее $3~\rm M$, для «Призма- $1/100\rm HE$ », не более $300~\rm M$ и не менее $5~\rm M$, для «Призма- $1/300\rm HE$ ».
- 4.10 При установке на рубеже нескольких извещателей необходимо обеспечить их пространственную развязку (для исключения взаимовлияния) и перекрытие зон обна-

ружения в вертикальной или горизонтальной плоскости для исключения «санкционированных по ошибке» пропусков. На рисунках 4.5, ... 4.7 показаны варианты пространственной развязки. Исключение взаимовлияния смежных извещателей обеспечивается: либо рядом устанавливаемыми одноименными блоками БПРД (БПРМ) и пространственным поперечным сдвигом осей их зон обнаружения для исключения эффекта экранирования (затенения) блоками друг друга, либо подключением проводной синхронизации с включением соответствующего режима. Расстояния между ус-




Рис. 4.8

1(2)

Рис. 4.9

ловными линиями, соединяющими крайние точки блоков участка, должны быть не менее 100 мм от блоков смежного участка.

- 4.11 При установке разноименных блоков (БПРМ, БПРД) любых участков, устанавливаемых навстречу друг другу, возможна «засветка» БПРМ и БПРД «чужого»
- участка, вплоть до выключения. Для исключения «засветки» при установке разноименных блоков смежных участков, необходимо либо обеспечить, чтобы их 3О не находились на одной линии, либо включить проводную синхронизацию блоков и взаимную синхронизацию смежных извещателей. БПРМ извещателя может «засвечиваться» любым БПРД, направленным на данный БПРМ и находящимся на расстоянии меньшем или равным расстоянию до собственного БПРД.

4.13 При установке извещателей вдоль заграждений необходимо определить: могут ли радиоволны, излученные БПРД, отразившись от заграждения попасть в БПРМ. Если такое возможно, повернуть оси 3О, как показано на рис.4.8. Угол

4

Рис. 4.10

поворота рассчитать с учетом расширения 3О см. график рис. 4.2, чтобы 3О не касалась заграждения.

4.14 При размещении извещателя в верхней части заграждения (почти «козырьковый» вариант), учесть влияние отраженных волн, также как в п. 4.13.Выбрать высоту установки блоков над заграждением, что

бы отраженные от заграждения волны не проецировались на БПРМ. В этом случае при установке использовать специальные кронштейны КВЗ из комплекта поставки. На рис. 4.10 (также как на рис. 4.4 и с теми же обозначениями) ориентировочно показаны сечения 30 для «козырькового» варианта.

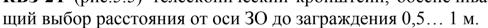
5. КОМПЛЕКТ ПОСТАВКИ

5.1 Комплект поставки извещателя выбирается из таблиц и упаковок:

Упаковка №1 (Блоки)

Наименование	Кол-во
Блок передающий (БПРД)	1 шт.
Блок приемный (БПРМ)	1 шт.
Узел крепления блоков УЗК*	2 шт.*
Паспорт, Руководство по эксплуатации, Формуляр*	1 комплект

- *Примечания: 1) $\mathbf{y}3\mathbf{K}\mathbf{-1} \partial \mathbf{J}\mathbf{S}\mathbf{K}\mathbf{-1} + \partial \mathbf{J}\mathbf{$
- 3) y3K-2/500 (рис.5.1)-для крепления блока на столбе \varnothing 100..500 мм.
- 4) Формуляр может не входить в комплект поставки.


Рис. 5.1

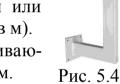


Рис. 5.3

Упаковка №2

КВ3-1/0 (рис.5.2); **КВ3-1/0,3** (рис.5.3); **КВ3-1/0,5** (рис.5.4) кронштейны для крепления блоков вдоль заграждений или стен зданий (/0; /0,3; /0,5 – размеры вертикального плеча в м). КВЗ-2Т (рис.5.5)-телескопический кронштейн, обеспечиваю-

Упаковка №3 (Монтажные коробки)

- 1) БД-1Н для подключения БПРД;
- 2) БМ-1Н для подключения БПРМ.

Рис. 5.5

Упаковка №4

Стойка СТ-1 для крепления и подключения БПРД (БПРМ)

1	
CT-1/1,0 (1,4)*	Стойка высотой 1,0 (1,4) м для установки БПРД (БПРМ)
OCT-1/0,5 (/0,8;/1)*	Опора 0,5 (0,8; 1,0) м для крепления любых стоек в грунт
УК-СТ1	Узел крепления БПРД (БПРМ) на стойках СТ-1 и СТ1-а
КССТ-1М(Д)Н	Встраиваемая в стойку СТ-1 коробка для подключения БПРМ (БПРД)

Стойка СТ1-а для крепления БПРД (БПРМ)

CT1-a/1,0 (1,4)*	Стойка высотой 1,0 (1,4) м диам. 57мм без КССТ	
OCT-1/0,5 (/0,8;/1)*	Опора 0,5 (0,8; 1,0) м для крепления любых стоек в грунт	
УК-СТ1	Узел крепления БПРД (БПРМ) на стойке	
УК-СТ1-БМ	Узел крепления БМ (БД) на стойке СТ1-а	

Стойка СТ-2 для крепления БПРД (БПРМ)

CT-2*	Стойка телескопическая 0,81,4 м	
OCT-1/0,5 (/0,8;/1)*	Опора 0,5 (0,8; 1,0) м для крепления любых стоек в грунт	

Стойка СТ-3 для крепления БПРД (БПРМ)

CT-3*	Стойка высотой от 0,8 м до 1,4м квадратного сечения, с дискретно изменяемой высотой установки блоков БПРД(БПРМ).	
OCT-1/0,5 (/0,8;/1)*	* Опора 0,5 (0,8; 1,0) м для крепления любых стоек в грунт	
УК-СТЗ Узел крепления БПРД (БПРМ) на стойке СТ-3		

^{*}Примечания: 1) Опора для крепления стоек выбирается по необходимой глубине заделки опор в грунт в зависимости от вида грунта.

2) Рекомендации по выбору и использованию стоек см. в разделе 10.3 и в Паспорте на стойки.

Упаковка №5 (Бесперебойный блок питания)

n/n	Наименование	Выходное напряжение	Максимальный ток нагрузки
1	ББП-12/0,66(3)	12 B	0,66 A
2	ББП-15/0,53(3)	15 B	0,53 A
3	ББП-24/0,33(3)	24 B	0,33 A
4	ББП-30/0,26(3)	30 B	0,26 A

6. УСТРОЙСТВО И РАБОТА ИЗВЕЩАТЕЛЯ

6.1 Принцип работы

6.1.1 Принцип работы извещателя основан на обнаружении нарушителя по вызываемому им изменению параметров электромагнитного поля. Поле (чувствительная зона) формируется между БПРД и БПРМ в виде вытянутого эллипсоида вращения. При пересечении ЧЗ нарушителем происходит изменение параметров поля. После обработки сигналов принимается решение о выдаче тревожного сигнала.

6.2 Структурная схема

6.2.1 Управляемый генератор 1 (см. рис. 6.1) вырабатывает импульсную последовательность определенной скважности. Под действием импульсов с управляемого генератора 1, модулятор 2 формирует последовательность СВЧ-радиоимпульсов, которые поступают на передающую антенну 3. Передающая антенна 3 излучает СВЧ-радиоимпульсы в направлении приемной антенны 4. Образовавшееся между передающей 3 и приемной 4 антеннами электромагнитное поле является источником полезных сигналов для обнаружения объектов, пересекающих данное электромагнитное поле. С выхода приемной антенны СВЧ-радиоимпульсы поступают на вход детектора 5 и далее на усилитель 6. Амплитуда усиленных импульсов содержит информацию о состоянии электромагнитного поля и, соответственно, о наличии в нем посторонних объектов. С первого выхода усилителя 6 сигнал поступает на вход компаратора 7, определяющего наличие на выходе усилителя 6 импульсов и информирующего об этом узел управления 8, который открывает ключ 9 и разрешает прохождение импульсов в узел принятия решений 10. Узел принятия решений 10 определяет состоя-

ние (замкнуто/разомкнуто) выходного оптореле. Элемент управления 11 задает способ синхронизации (по радиолучу или по выделенному проводу) управляемого генератора 1 с помощью узла управления 8, который в свою очередь и определяет моменты открывания ключа 9.

Рис. 6.1

6.3 Описание конструкции блоков

6.3.1 Общие сведения

Блок передающий (БПРД) и блок приемный (БПРМ) имеют сходное конструктивное исполнение (см. рис. 6.2). Внутри металлического корпуса с радиопрозрачной лицевой панелью установлен субблок, включающий печатные платы и модули.

Жгут для внешних соединений и подключений выводится из нижней части корпуса. Для защиты от внешних воздействий жгут помещен внутри металлорукава. На тыльной поверхности блоков размещены конструктивные элементы для крепления и юстировки. На задней стенке закреплены антенный модуль и электронные узлы на печатных платах. Передняя часть кожуха имеет радиопрозрачную вставку из стеклопластика. С внешней стороны задней стенки к блоку БПРМ (БПРД) присоединено устройство крепления и юстировки (УЗК). Под УЗК расположена

Рис. 6.2

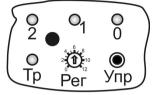


Рис. 6.3

втулка для ввода кабеля и закрепления металлорукава. Конструкция БПРМ отличается от БПРД присутствием на тыльной поверхности органов управления и индикации (см. рис. 6.3).

6.3.2 Органы управления и индикации

- 6.3.2.1 На тыльной поверхности БПРМ под защитной крышкой расположены индикаторы «0» (нулевой разряд сигнала), «1» (первый разряд), «2» (второй разряд) и «Тр» (Тревога), регулятор чувствительности извещателя «Рег» и кнопка управления «Упр». Крышка, обеспечивающая защиту органов управления и индикации от внешних воздействий, закрепляется на тыльной поверхности БПРМ двумя невыпадающими винтами. В середине условной линии соединяющей индикатор «2» и регулятор «Рег» находится отверстие **инфракрасного датчика** положения крышки (открыта закрыта). Извещатель формирует сигнал тревоги при вскрытии защитной крышки ПРМ, т.к. в момент её открытия выходное реле разомкнуто.
- 6.3.2.2 В извещателе реализованы два вида синхронизации работы блоков БПРМ и БПРД: 1) синхронизация по радиолучу, когда БПРД излучает радиоимпульсы, а БПРМ «захватывает и отслеживает» их во временном «окне»; 2) синхронизация по выделенным проводам, тогда БПРМ формирует синхроимпульсы, передаваемые на БПРД по выделенным проводам, тем самым определяет моменты излучения (рабочих) радиоимпульсов БПРД. Выбор вида синхронизации осуществляется соответствующим подключением коричневого провода кабеля БПРМ извещателя (табл.6.1).

Таблина 6.1

$N_{\underline{0}}$	Наименование	Подключение коричневого провода
1	Синхронизация по р-лучу	- Ипит (или неподключен)
2	Синхронизация по проводу	+Uпит

6.3.2.3 В извещателе реализованы два алгоритма обработки, которые отличаются тем, что выбирают разные коэффициенты разложения сигналов, использующиеся в процессе распознавания образа. Фактически, алгоритм 2 программно «сжимает 30», т. е. «делает» ее более узкой по сравнению с 30, определяемой алгоритмом 1.

Выбор осуществляется соответствующим подключением белого провода коричневой пары кабеля БПРМ извещателя (см. табл. 6.2).

$N_{\underline{0}}$	Наименование	Подключение белого провода
1	Алгоритм 1	- Uпит (или не подключен)
2	Алгоритм 2	+Ипит

6.3.3 Режимы работы извещателя

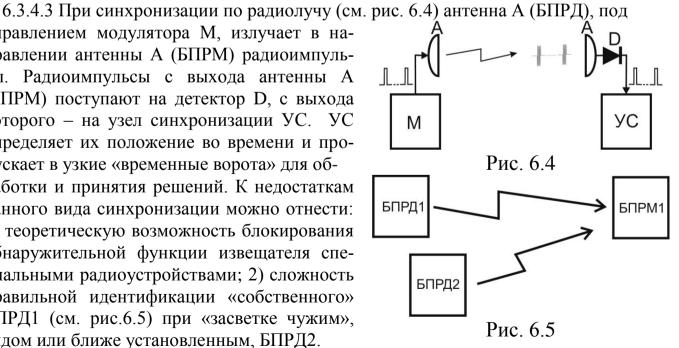
6.3.3.1 **<u>НОСТИРОВКА</u>** — режим, при котором выходное оптореле извещателя разомкнуто и осуществляется юстировка БПРД и БПРМ извещателя (процесс точного направления БПРД и БПРМ извещателя друг на друга с целью получения максимального сигнала и правильного формирования 3О), включается 3-х секундным нажатием кнопки управления «**Упр**», выключается либо повторным нажатием кнопки, либо автоматически по истечении ~6 мин. В данном режиме группа индикаторов «Тр», «2», «1», «0» отображает четыре старших разряда амплитуды опорного сигнала (в двоичном коде). Минимальное значение амплитуды равно нулю (0000), а максимальное — 15 (1111 см. табл. 6.3). Знаком «☼» в таблице обозначено включенное состояние индикатора, а «-» - выключенное.

Таблица 6.3

Dave	4773.6	Значение амплитуды сигнала в		Наименование индикатора		
		десятичном (двоичном) коде	«Тр»	«2»	«1»	«O»
		0 (0000)	-	-	-	-
	A	1 (0001)	-	-	-	₩
	НАСТРОЙКА	2 (0010)	-	-	₩	-
	<u> </u>	3 (0011)	-	-	₩	₩
		4 (0100)	-	₩	-	-
A	IA(5 (0101)	-	₩	-	\
ЮСТИРОВКА	I	6 (0110)	-	₩	₩	-
PO		7 (0111)	-	₩	₩	\
ГИ		8 (1000)	₩	-	-	-
C		9 (1001)	\Rightarrow	-	-	₩
H		10 (1010)	₩	-	₩	-
		11 (1011)	₩	-	₩	\
		12 (1100)	☆	\Rightarrow	-	-
		13 (1101)	₩	₩	-	₩
		14 (1110)	☆	✡	₩	-
		15 (1111)	☆	₩	₩	☆

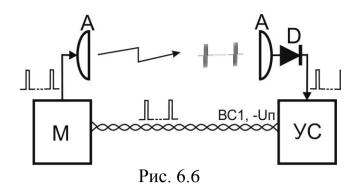
6.3.3.2 **НАСТРОЙКА** — режим, при котором производится регулировка ширины зоны обнаружения и чувствительности извещателя. Ширина зоны обнаружения определяется алгоритмом функционирования извещателя, алгоритм 2 программно «сжимает 3О» и «делает» ее более узкой по сравнению с 3О, определяемой алгоритмом 1. Алгоритм выбирается соответствующим подключением **белого** провода коричневой пары кабеля БПРМ извещателя (табл. 6.2).

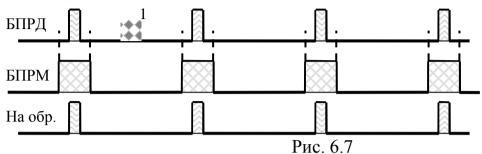
Регулировка чувствительности извещателя производится вручную, вращением ре-


гулятора «Рег», в соответствии с маркировкой (от 0 до 12) на панели индикации. Увеличение значения чувствительности производится вращением регулятора «Рег» по часовой стрелке, а уменьшение – против часовой стрелки. Значение «0» соответствует минимальному значению, а значение «12» - максимальному.

В режимах НАСТРОЙКА И ТРЕВОГА группа индикаторов «2», «1», «0» отображает три старших разряда амплитуды сигнала (в двоичном коде). Минимальное значение амплитуды равно нулю (000), а максимальное – 7 (111, табл. 6.3). Знаком «Ф» в таблице обозначено включенное состояние индикатора, а «-» - выключенное.

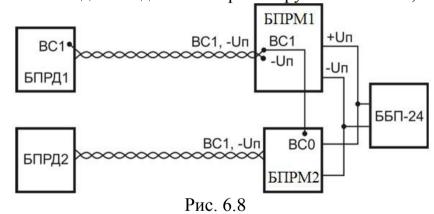
- 6.3.3.3 ДЕЖУРНЫЙ режим, при котором выходное реле извещателя замкнуто и осуществляется контроль 3О (охрана рубежа). Данный режим устанавливается только при закрытой защитной крышке БПРМ, когда закрыто окно инфракрасного датчика положения крышки (открыта – закрыта).
- 6.3.3.4 ТРЕВОГА режим, при котором выходное реле извещателя разомкнуто, сигнализируя о нарушении рубежа или снятии защитной крышки БПРМ, когда открывается окно инфракрасного датчика положения крышки (открыта – закрыта).
- 6.3.3.5 В режиме ТРЕВОГА при снятой защитной крышке БПРМ индикатор «Тр» 8-ми кратно прерывисто мигает (методично включается/выключается восемь раз), а группа индикаторов «2», «1», «0» отображает три старших разряда сигнала.


6.3.4 Синхронизация блоков


- 6.3.4.1 В извещателе применено импульсное управление активным состоянием. В активном состоянии БПРД излучает в направлении БПРМ радиоимпульсы. Большую часть времени извещатель находится в пассивном состоянии, во время которого производится обработка сигналов и принятие решений. Повышение помехоустойчивости достигается за счет максимальной скважности активного состояния.
- 6.3.4.2 Синхронизация блоков позволяет согласованно формировать и анализировать радиоимпульсы. В извещателе может выбираться вид синхронизации блоков:
 - 1) по радиолучу, 2) по выделенным проводам (проводная синхронизация).
- управлением модулятора М, излучает в направлении антенны А (БПРМ) радиоимпульсы. Радиоимпульсы с выхода антенны А (БПРМ) поступают на детектор D, с выхода которого – на узел синхронизации УС. УС определяет их положение во времени и пропускает в узкие «временные ворота» для обработки и принятия решений. К недостаткам данного вида синхронизации можно отнести: 1) теоретическую возможность блокирования обнаружительной функции извещателя специальными радиоустройствами; 2) сложность правильной идентификации «собственного» БПРД1 (см. рис.6.5) при «засветке чужим», рядом или ближе установленным, БПРД2.

6.3.4.4 При синхронизации по выделенным проводам (ВС1, -Uп, см. рис. 6.6), узел синхронизации УС (БПРМ) посылает в модулятор М (БПРД) управляющие импульсы с периодом, выбираемым по случайному закону, во время которых антенна А

(БПРД), под управлением модулятора М, излучает в направлении антенны А (БПРМ) радиоимпульсы; радиоимпульсы с выхода антенны А (БПРМ) - поступают в детектор D, с выхода которого — на узел синхронизации УС и далее пропускаются через «временные ворота» для обработки и принятия решений.



Данный способ обеспечивает невозможность блокирования извещателя с помощью спецсредств и влияния близко расположенных «чужих» БПРД. При этом питание БПРД и БПРМ может осуществляться от общего или разных источников питания.

6.3.4.5 Временная диаграмма на рис. 6.7 иллюстрирует сказанное в п. 6.3.3.4. Помеха 1 «не пропускается» во временные ворота на дальнейшую обработку.

6.3.4.6 Для исключения взаимовлияния (засветки) соседних параллельных или смежных извещателей, имеется возможность включения режима внешней синхронизации. При этом активный выход ВС1 (БПРМ1, см. рис. 6.8) синхронизации БПРД1 ведущего извещателя подключается к входу (ВС0) внешней синхронизации БПРМ2 ведомого извещателя, независимо от того где находится синхронизируемый БПРМ2,

вблизи смежного БПРД1 или БПРМ1, т. е. на любом конце активного провода (ВС1) синхронизации. Подключение должно также проводиться витой парой с одним из проводов питания (+Uп или –Uп). При этом питание БПРМ1 и БПРМ2 должно осуществляться от общего источника питания.

6.3.5 Кабели (жгуты) подключения блоков

6.3.5.1 <u>Кабель БПРМ</u> подключается к внешним устройствам (БМ-1H, КСУМ1 или др.) с помощью встроенного восьмижильного кабеля в экранирующей оболочке (ЭКС-ГВПВЭ-5е-4×2×0,52). Кабель имеет четыре витые пары и неизолированный провод, соединенный с экранирующей лентой. Назначение жил кабеля приведено в табл. 6.4. Назначение проводов определяется по цвету скрученных пар.

№ пары	Цвет провода	Назначение	
1	оранжевый	+Uпит	
1	белый	ВС0 – вход внешней синхронизации	
2	коричневый Выбор вида синхронизации блоков (-Uпит/+U		
2	белый	Выбор алгоритма обработки (-Uпит/+Uпит)	
3 синий		ВС1 – выход проводной синхронизации	
J	белый	- Uпит	
1	зеленый	Контакты выходного реле:	
4	белый	НЗ - дежурный режим, НР - тревога	

6.3.5.2 <u>Кабель БПРД</u> подключается к внешним устройствам (коробке соединительной и др.) с помощью встроенного четырехжильного кабеля в экранирующей оболочке (ЭКС-ГВПВЭ-5e-2×2×0,52). Кабель имеет две витые пары. Назначение жил кабеля приведено в табл. 6.5.

Таблица 6.5

№ пары	Цвет провода	Назначение	
1	оранжевый	+ Ипит	
1	белый	- Uпит	
2	синий	Вуаль в прородной синуронизации (С)	
2	белый	Входы проводной синхронизации (С)	

Примечания: 1) Допускается наращивание (удлинения) и укорочение кабелей БПРД и БПРМ. Наращивание должно производиться кабелем той же марки с соблюдением цвета и парности проводников в витой паре.

2) Допускается восстанавливать оболочку кабеля с помощью термоусадочной трубки. После укорочения металлорукава восстановить правильность его формы, обратив особое внимание на концы в местах ввода. В случае необходимости, заменить металлорукав на аналогичный по размерам.

6.3.6 Конструкция ББП

- 6.3.6.1 ББП построен в виде одноблочного конструктивно законченного устройства (рис. 6.9) и предназначен для питания извещателей от сети переменного напряжения ~ 220 В.
- 6.3.6.2~ББП имеет двойную гальваническую развязку выхода и обеспечивает защиту от проникновения на выходы «24 В» («12 В», «30 В») напряжения ~220 В и высоковольтных импульсных сетевых помех.

Рис. 6.9

- 6.3.6.3 ББП обеспечивает защитное отключение сетевого напряжения при «пробое» сетевого напряжения на корпус, шасси или другие посторонние предметы. Допустимый ток утечки в защищаемой цепи не превышает 10 мА.
- 6.3.6.4 ББП обеспечивает стабилизацию выходного напряжения и поставляется в следующих модификациях (см. табл. 6.6).

n/n	Наименование	Выходное напряжение	Максимальный ток нагрузки
1	ББП-12/0,663	12 B	0,66 A
2	ББП-15/0,533	15 B	0,53 A
3	ББП-24/0,333	24 B	0,33 A
4	ББП-30/0,263	30 B	0,26 A

- 6.3.6.5 Питание ББП осуществляется от однофазной сети переменного тока напряжением от 180В до 240В, частотой 48...62 Гц. В ББП встроена сменная аккумуляторная батарея (АКБ) с номинальным напряжением 12 В (резервный источник энергии), которая обеспечивает бесперебойное питание при кратковременных отключениях сетевого напряжения ~220 В.
- 6.3.6.6 ББП предназначен для работы в условиях открытой местности или не отапливаемых помещений при температуре от минус 50° С до плюс 50° С, относительной влажности не более 95% при температуре плюс 35° С.

6.3.6.7 ББП обеспечивает:

- защиту от короткого замыкания по выходу;
- защиту обслуживающего персонала от поражения электрическим током;
- индикацию включения и наличия сетевого и выходного напряжения;
- подзарядку АКБ током до 0,5А;
- ток потребления по линии сети ~220 В не более 0,15 А, при полной нагрузке.
- 6.3.6.8 ББП выполнен в литом алюминиевом корпусе с крышкой со степенью защиты IP65. Внутри корпуса (рис. 6.9, 6.10), на съемном шасси размещены электронные модули и АКБ 12 В/1,3 Ач для резервного питания.

6.3.6.9 На рис. 6.10 обозначено:

1 — рычаг выключателя ББП с кнопкой ТЕСТ (устройство защитного отключения УЗО); 2 — корпус ББП; 3 — крышка ББП; 4 - винт крепления крышки ББП; 5 - шасси; 6 — контакты подключения питания; 7 — ввод кабеля питания «24В»; 8 — ввод сетевого кабеля.

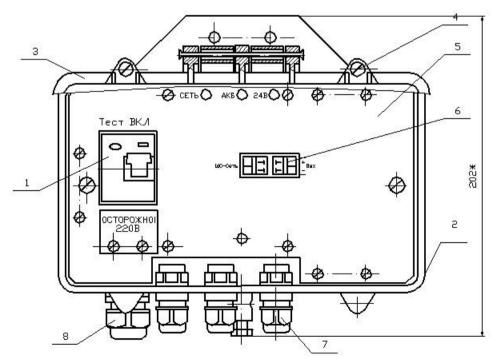


Рис. 6.10

- 6.3.6.10 Светодиоды: СЕТЬ-красный, АКБ-желтый, 24В-зелёный.
- 6.3.6.11 Контрольный кабель подключается к группам зажимов.
- 6.3.6.12 В нижней части корпуса расположена клемма заземления и гермовводы для закрепления и уплотнения кабелей.
 - 6.3.6.13 Macca ББП 3,3±0,2 кг, габаритные размеры 210мм x240мм x120мм.
- 6.3.6.14 Функционально ББП состоит из нескольких узлов: защитного устройства, трансформатора, стабилизатора напряжения, преобразователя напряжения, резервной АКБ, схемы управления и коммутационного модуля.
- 6.3.6.15 Напряжение сети через защитное устройство поступает на первичную обмотку трансформатора, с вторичной обмотки которого, напряжение поступает на выпрямитель и вторичный преобразователь напряжения. Параллельно напряжение с вторичной обмотки поступает на схему обеспечения подзарядки АКБ.
- 6.3.6.16 Световые индикаторы на лицевой поверхности шасси ББП указывают на наличие напряжений: сети - «СЕТЬ»; АКБ - «АКБ», на выходе - «24В» («Вых»).
- При пропадании напряжения в сети вторичный преобразователь переходит на работу от АКБ.
- 6.3.6.18 Назначение зажимов группы «ШС-сеть» (см. рис. 6.10 рис. 6.11) - «сухие» контакты тревожного реле отсутствия сетевого напряжения.

Рис. 6.11 6.3.6.19 Включение и выключение ББП осуществляется с помощью рычага выключателя «ВКЛ». В нормальном состоянии, при наличии

сетевого напряжения и заряженной АКБ, индикаторы «Сеть» и «24В» («Вых») на лицевой поверхности шасси непрерывно светятся. При пропадании сетевого

напряжения ББП переходит на питание от АКБ.

- 6.3.6.20 При «пробое» сетевого напряжения на внутренние элементы схемы или касании внутренних сетевых проводов человеком происходит срабатывание схемы персонала И выключение напряжения. Для защиты сетевого работоспособности схемы защиты рекомендуется не реже одного раза в месяц (при температуре не ниже минус 25°C) искусственно вызвать ее срабатывание путем нажатия на кнопку «ТЕСТ», расположенную слева от рычага выключателя ББП.
- 6.3.6.21 После подачи или включения сетевого напряжения ББП переходит в нормальный режим, и включатся индикаторы «СЕТЬ», «АКБ» и «24В» («Вых»).
- 6.3.6.22 При пропадании или выключении сетевого напряжения гаснет индикатор «СЕТЬ» и размыкаются «сухие» контакты «ШС-сеть» выходного реле (Рис. 6.9).
- 6.3.6.23 При длительном выключении ББП, например во время хранения, АКБ должна быть механически отключена (снят красный наконечник с «+» вывода АКБ).
- 6.3.6.24 При длительном выключении ББП во время действия отрицательных температур, АКБ должна быть извлечена из ББП и храниться при положительной температуре (для сохранения ресурса работы).
- 6.3.6.25 АКБ относится к категории «необслуживаемых» устройств, однако через два года эксплуатации она должна быть снята, подвергнута тестированию и тренировке, заряжена, или заменена).

7. МАРКИРОВАНИЕ И ПЛОМБИРОВАНИЕ

7.1 На блоках извещателя нанесены: товарный знак завода-изготовителя; шифр изделия; заводской номер, квартал и год выпуска.

8. ТАРА И УПАКОВКА

8.1 Транспортная тара имеет манипуляционные знаки:

ОСТОРОЖНО, ХРУПКОЕ, БОИТСЯ СЫРОСТИ, ВЕРХ, НЕ КАНТОВАТЬ.

8.2 На транспортной таре имеется клеймо ОТК завода-изготовителя.

9. МЕРЫ БЕЗОПАСНОСТИ

9.1 Извещатель должен устанавливаться и обслуживаться персоналом, имеющим твердые практические навыки в его эксплуатации, и допущенным к работе с электроустановками напряжением до 1000 В.

Необходимо строго соблюдать правила техники безопасности при проведении монтажных работ. Пространства вне помещений и помещения с проводящими полами относятся к категории особо опасных и никакая «двойная» изоляция инструментов не обеспечивает безопасного проведения работ !!!

- 9.2 Нарушение требований данной инструкции может привести к преждевременному выходу извещателя из строя.
- 9.3 Категорически запрещается на провода встроенных в БПРМ и БПРД кабелей подавать напряжение свыше 36 В.
- 9.4 При подключении к БПРД и БПРМ линий (проводов и кабелей) протяженностью более 250 м необходимо устанавливать дополнительную грозозащиту, обеспечивающую нейтрализацию зарядов наведенных во время грозы или других электрических разрядов или использовать распредкоробки БД, БМ, КСУМ.

10. ПОРЯДОК УСТАНОВКИ

10.1 Требования к подготовке участка и размещению блоков извещателя

- 10.1.1 Участок между БПРД и БПРМ изделия должен удовлетворять следующим требованиям:
- а) поверхность участка должна быть выровнена с точностью +0.3 м на отрезке рубежа, где зона обнаружения соприкасается с поверхностью земли. При больших положительных отклонениях верхние кромки препятствий могут образовывать достаточно мощные вторичные источники радиоволн или вообще экранировать БПРМ от БПРД (в отсутствии прямой видимости). При наличии ослабленного сигнала, соответственно уменьшается соотношение сигнал/помеха, что может приводить к снижению периода ложных тревог. На рис. 10.1 показан случай, когда высота препятствия достигает высоты условной осевой линии, проведенной через центры БПРД и БПРМ. Видно как искажается зона обнаружения и образуются возможности для ее бесконтрольного пересечения в положении «согнувшись», а любые изменения на верхней

поверхности (кромке) препятствия сильно изменяют амплитуду полезного сигнала и снижают соотношение помеха;

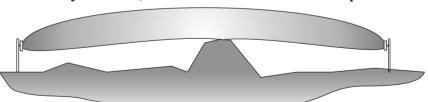


Рис. 10.1

- б) в чувствительной зоне (см.рис. 4.2, 4.4) не должно быть колеблющихся под действием метеофакторов предметов (кустов и др. растительности, выше 0,3 м, ветвей деревьев, калиток, ворот и др.);
- в) ширина зоны отчуждения должна выбираться с учетом ширины зоны обнаружения (см. п. 4.4). Допускается меньшая ширина зоны отчуждения. При этом может значительно снизиться амплитуда сигнала, определяемого во время юстировки. В

этом случае необходимо изменить пространственное положение блоков БПРМ (БПРД). Например, в случае крепления на опорах (столбах или трубах), повернуть УЗК вокруг опоры таким образом, чтобы блок БПРМ (БПРД) переместился относительно стены или забора на 70...100 мм, при этом нужно установить направление данного блока на противоположный блок до максимально возможного увеличения амплитуды сигнала БПРМ. В некоторых случаях, когда не удается достигнуть приемлемого увеличения сигнала, может снизиться помехоустойчивость извещателя, что определяется при контрольном прогоне или опытной эксплуатации;

- г) в 3О извещателя допускается наличие отдельных неподвижных предметов (столбы, стволы деревьев без нижних веток и др.) на расстоянии не менее 1 м от оси, соединяющей БПРД и БПРМ;
- д) высота травяного покрова в 3О не должна превышать 0,3 м при высоте установки блоков 0,9 м;
- е) высота снежного покрова в 3О должна быть не более 0,5 м при высоте установки блоков 0,9 м. В случае увеличения высоты снежного покрова свыше 0,5 м изменить высоту установки БПРМ (БПРД) чтобы расстояние от осевой линии, соединяющей центры блоков, до снежной поверхности было не менее 0,4 м.
 - 10.1.2 Определить положения блоков и предполагаемую форму 3О.
- 10.1.3 Выбрать место и способ крепления блоков, соответствующие узлы крепления и другие вспомогательные кронштейны и материалы.

Примечания: 1) Кабели БПРМ (БПРД) имеют «уличное» исполнение и не требуют никакой защиты кроме защиты от механических повреждений. Однако на металлорукав кроме механической защиты возложена дополнительная функция экранирования кабеля и заземления металлических корпусов БПРД и БПРМ.

2) Чтобы избежать дополнительных работ по удлинению кабелей в металлорукавах, длины кабелей необходимо указывать при заказе извещателей.

10.2 Установка на заграждении или стене

10.2.1 Вариант установки блоков на стене 1 (заграждении) с помощью кронштейна УЗК-1 показан на рис. 10.2, а с помощью кронштейна КВЗ на рис. 10.3. Произвести разметку для крепления кронштейна 2. Центры отверстий располагаются в углах условного прямоугольника 80×60 для УЗК-1 и (80×80 для КВЗ). С помощью винтов 3 с пружинных шайб и гаек прикрепить БПРД (БПРМ) к кронштейну 2. Просверлить соответствующие отверстия в стене (заграждении) 1 и с по-

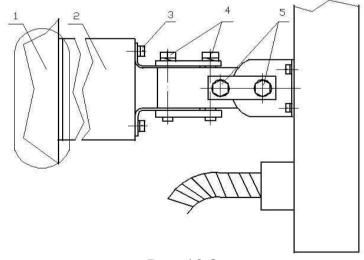


Рис. 10.2

мощью шурупов или болтов с шайбами закрепить БПРМ (БПРД) на заграждении. Блоки крепятся к кронштейну с помощью винтов 3 с шайбами 2. Исключить возможное взаимовлияние смежных участков, когда БПРД одного участка направлен на БПРМ другого участка.

- 10.2.2 Определить место крепления БПРМ (БПРД) на стене или поверхности заграждения и произвести разметку, сверление и др. необходимые действия.
- 10.2.3 УЗК-1 обеспечивает поворот по азимуту (в горизонтальной плоскости) на 180^{0} (- $90^{0}...+90^{0}$), по углу места (в вертикальной плоскости) на 150^{0} (- $75^{0}...+75^{0}$).
- 10.2.4 Для проведения юстировки по азимуту необходимо ослабить болты 4 (рис. 10.2) до

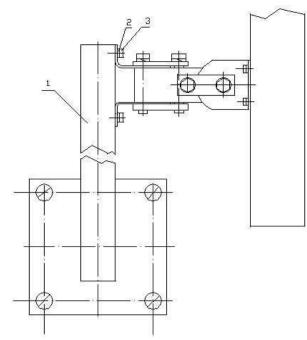


Рис. 10.3

обеспечения возможности поворота блока с мягким усилием. Повернуть блок БПРМ (БПРД) в направлении противоположного блока БПРД (БПРМ) данного участка. Затянуть болты 4 до выпрямления пружинных шайб.

Примечания: 1. Максимум диаграммы совпадает с перпендикуляром к плоскости радиопрозрачного окна. 2. Для работы использовать рожковый ключ S=10 и отвертку с шириной рабочей части 0,8 мм для винта 3 ($M4\times10$).

- 10.2.5 Для проведения визуальной юстировки по углу места (см. рис.10.2) ослабить болты 5 до обеспечения поворота блока с мягким усилием. Повернуть блок БПРМ (БПРД) в направлении противоположного блока. Затянуть болты 5 до выпрямления пружинных шайб.
- 10.2.6 После проведения визуальной юстировки, уточнить юстировку по индикаторам на БПРМ в режиме «Юстировка» (см.п. 11.2).

10.3 Установка на специальных стойках

10.3.1 Виды исполнений стоек, опор для закрепления стоек, узлов для закрепления блоков на стойках приведены в таблице 10.1

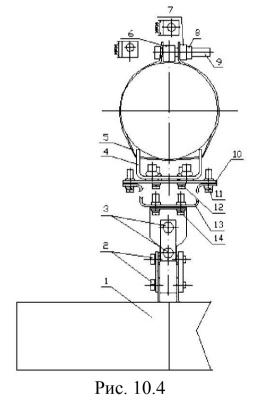
Таблица 10.1

CT1-а*Стойка высотой 1,4 м диам. 57ммCT-2*Стойка телескопическаяCT-3*Стойка с дискретно изменяемой высотойОСТ-1/0,5 (/0,8; /1)*Опора для крепления стоек устанавливается в грунт на глубину 0,5 (0,8; 1,0) мУК-СТ1Узел крепления БПРД (БПРМ) на стойке СТ-1 и СТ1-аУК-СТ3Узел крепления БПРД (БПРМ) на стойке СТ-3	CT-1/1,0 (1,4)	Стойка высотой 1,0 (1,4) м для установки БПРД (БПРМ)	
CT-3*Стойка с дискретно изменяемой высотойOCT-1/0,5 (/0,8; /1)*Опора для крепления стоек устанавливается в грунт на глубину 0,5 (0,8; 1,0) мУК-СТ1Узел крепления БПРД (БПРМ) на стойке СТ-1 и СТ1-аУК-СТ3Узел крепления БПРД (БПРМ) на стойке СТ-3	CT1-a*	Стойка высотой 1,4 м диам. 57мм	
OCT-1/0,5 (/0,8; /1)* Опора для крепления стоек устанавливается в грунт на глубину 0,5 (0,8; 1,0) м УК-СТ1 Узел крепления БПРД (БПРМ) на стойке СТ-1 и СТ1-а УК-СТ3 Узел крепления БПРД (БПРМ) на стойке СТ-3	СТ-2* Стойка телескопическая		
УК-СТ1 Узел крепления БПРД (БПРМ) на стойке СТ-1 и СТ1-а УК-СТ3 Узел крепления БПРД (БПРМ) на стойке СТ-3	СТ-3* Стойка с дискретно изменяемой высотой		
устанавливается в грунт на глубину 0,5 (0,8; 1,0) м УК-СТ1 Узел крепления БПРД (БПРМ) на стойке СТ-1 и СТ1-а УК-СТ3 Узел крепления БПРД (БПРМ) на стойке СТ-3	OCT 1/0 5 (/0 Q+ /1)*	Опора для крепления стоек	
УК-СТЗ Узел крепления БПРД (БПРМ) на стойке СТ-3	001-1/0,3 (/0,8, /1)	устанавливается в грунт на глубину 0,5 (0,8; 1,0) м	
	УК-СТ1	Узел крепления БПРД (БПРМ) на стойке CT-1 и CT1-а	
·	УК-СТЗ Узел крепления БПРД (БПРМ) на стойке СТ		
УК-СТ1-БМ Узел крепления БМ (БД) на стойке СТ1-а	Узел крепления БМ (БД) на стойке СТ1-а		

^{*}Примечания. На стойках CT-1 и CT1-а изменение высоты установки блоков БПРM (БПРД) (0,8...1.35м) обеспечивается перемещением VK-CT1 по стойке. На CT-2 изменение высоты установки блоков обеспечивается дискретным перемещением шпи-

ля с шагом 0,05м от 0,8 до 1,35м. На СТ-3 изменение высоты установки блоков обеспечивается перемещением УК-СТ3 дискретно с шагом 0.05м от 0.8 до 1,35м. Опоры также изготавливаются в трех модификациях, отличающихся глубиной установки в грунт: 0,5 м, 0,8 м и 1,0 м (выбираются исходя из обеспечения необходимой устойчивости стоек в конкретном грунте). Для предотвращения раскачивания кабелей в металлорукавах, в комплект поставки могут включаться два дополнительных хомута

для крепления кабелей к стойке.


10.3.2. Подробные сведения по выбору стоек см. в Паспорте

10.4 Установка на столбе (трубе)

10.4.1 Выбрать или установить опору для крепления блоков (столб или трубу диаметром от 70 до 110 мм). Если выбранная опора имеет прямоугольное или другое сечение заказать в комплект поставки или изготовить специальные скобы хомуты. При установке учесть характеристики грунта и обеспечить устойчивость и долговечность создаваемой конструкции, возможно, потребуется бетонирование части опоры, заглубленной в грунт.

10.4.2 На опоре с помощью шпилек, гаек и шайб устанавливаются скобы-хомуты УЗК-2 для крепления одного БПРД (БПРМ) или УЗК-22 для парного крепления БПРД (БПРМ). К УЗК... присоединены устройства крепления и юстировки с блоком БПРМ (БПРД). Высота установки определяется оперативно-тактическими соображениями и конкретными условиями. Ориентировочная высота установки 0,8...0,9 м от усредненной поверхности земли (пола) до нижней части БПРМ (БПРД).

10.4.3 Установка блоков на опоре диаметром от 100мм до 500мм производится с помощью УКЗ-2/500. Крепление производить в соответствии с рис. 10.4. В пазы платформы 4 из комплекта УЗК-2/500пропустить ленту 5. Лентой обхватить опору. В отверстие, ближайшее к точке на поверхности столба диаметрально противоположной платформе, одного конца ленты вставить болт 9 (М8×50) резьбовой частью к другой части ленты.

На болт надеть втулку-опору 6 и подтянуть вторую часть ленты. Максимально возможно натянуть ленту и вставить болт 9 в отверстие. Надеть на болт сухарь 7, затем пружинную шайбу и завернуть гайку 8. Переместить ленту с платформой на необходимую высоту и гайкой 8 обеспечить надежное крепление платформы. При установке ББП закрепить блок винтами 12. Для установки БПРМ (БПРД) закрепить на платформе винтами 11 пластину 10. На пластине 10 закрепить державку 13 винтами 11. На державке 13 закрепить блок винтами 14. Регулировку направления радиолуча произвести поворотом кожуха раздельно по азимуту и углу места, ослабив болты 2 или 3.

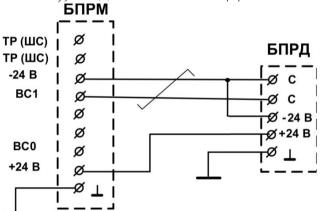
10.5 Установка вдоль заграждений и стен

- 10.5.1 Возможны два варианта крепления блоков: а) блоки устанавливаются непосредственно на поверхность заграждения (стены); б) один из блоков устанавливается непосредственно на поверхность заграждения (стены), а другой на стойку или опору; в) блоки устанавливаются на стойках или опорах в соответствии с п.п. 10.3, 10.4.
 - 10.5.2 Подготовку и установку блоков произвести аналогично п.п. 10.2, 10.3, 10.4.

10.6 Подключение блоков

- 10.6.1 Подключить токопроводящие жилы кабелей извещателя.
- 10.6.2 **Кабель БПРД** подключить к зажимам «ИЗВ» в соответствии с маркировкой на шасси КССТ-1М(Д)Н (БМ-1Н, БД-1Н или др.) и табл. 10.2.

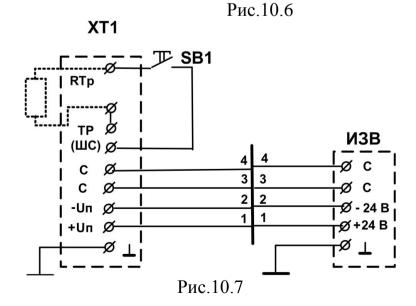
Таблица 10.2


БПРД

С

Ø -24 B

№ пары	Маркировка шасси	Цвет провода	Назначение
1	«+» («1»)	оранжевый	+ Ипит
1	« - » («2»)	белый	- Ипит
2	«C» («3»)	синий	Входы проводной
2	«C» («4»)	белый	синхронизации


10.6.2.1 При проводной синхронизации БПРМ и БПРД могут соединяться между собой двумя способами: 1) по трехпроводной схеме (см. рис. 10.5), когда БПРМ и БПРД запитываются от общего источника питания; 2) по двухпроводной схеме (см. рис. 10.6), когда БПРМ и БПРД запитываются от разных источников питания.

При синхронизации по радиолучу соединение БПРМ с БПРД не требуется, и блоки могут запитываться от общего или разных источников питания.

Примечание. Два провода, подключенные к контактам «BC1» и «-24 В», должны быть в одной витой паре.

10.6.3 <u>Кабели БПРД</u> подключить к зажимам «ИЗВ» в соответствии с маркировкой на шасси

БПРМ

Ø

Ø

ТР (ШС)

ТР (ШС)

BC₀

БД-1H [см. рис. 10.7], КССТ-1H, БМ-1H, и табл. 10.1.

10.6.4 *Кабель БПРМ* подключить* к зажимам «ИЗВ» в соответствии с маркировкой на шасси КССТ-1H (БМ-1H) [см. рис. 10.8 и табл. 10.3.].

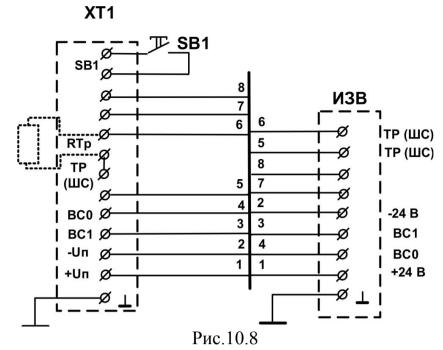


Таблица 10.3

№ пары	Маркировка шасси	Цвет провода	Назначение
, «+» («1») оранжевый		+Uпит	
1	«BC0» («2»)	белый	Вход внешней синхронизации ВС0
2	«ДК» («З»)	коричневый	Выбор вида синхронизации блоков
2	«ДК» («4»)	белый	Выбор алгоритма обработки
2	«BC1» / («5»)	синий	Выход проводной синхронизации ВС1
3	« - » («6»)	белый	- Uпит
4	«TP» («7»)	зеленый	Контакты выходного реле:
4	«TP» («8»)	белый	НЗ - дежурный режим, НР - тревога

10.7 Подключение кабеля связи

10.7.1 В соответствии с электрической схемой проекта произвести подключение проводников кабеля связи (с ППК или концентратором) к контактам зажимов расположенным на обратной стороне шасси (КССТ-1H, БМ-1H, БД-1H или др., рис. 10.8). В зажимы «RTP» установить контрольный резистор. Пары контрольных проводов от ППК подключить к зажимам «TP» (ШС). В случае контроля цепи ТРЕВОГА на зажимах ТР без внешнего резистора (перемычка в зажимах RTP), необходимо ограничить ток значением, не превышающим 100 мА (ограничитель тока можно установить вместо перемычки в зажимах RTP). Можно объединить «тревожный сигнал» кнопки «SВ» вскрытия крышки с одним из «тревожных сигналов», например ТР, для чего подключить соответствующую пару контрольных проводов от ППК к двум зажимам «ТР1» и «SВ1», а между другими зажимами «ТР» и «SВ1» установить электропроводную перемычку. Пару проводов «24 В» от блока питания подключить к двум зажимам «24 В».

Примечания:

- 1) Для подключения проводов кабеля нажать на рычаг контакта, вставить зачищенный провод (проводящую жилу) в открывшееся отверстие контакта, и отпустить рычаг;
- 2) Установить в зажимы **RTP** необходимый для приемно-контрольного прибора оконечный резистор и осуществлять контроль на зажимах

ТР, при этом значение **RTP** определяется сопротивлением, необходимым для поддержания ДЕЖУРНОГО РЕЖИМА ППК.

3)Диаметр сечения проводов, подключаемых к зажимам не должен превышать 2,5мм.

10.7.2 Аккуратно уложить кабели в КССТ-1Н (БМ-1Н, БД-1Н или КСУМ-1), закрыть крышку 1 (рис. 10.9), закрепить с помощью винтов 2 и опломбировать.

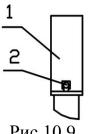


Рис.10.9

11. ПОДГОТОВКА ИЗВЕЩАТЕЛЯ К РАБОТЕ

11.1 Подготовка извещателя

- 11.1.1 Подготовка извещателя к работе проводится двумя операторами, допущенными к работе с электроустановками напряжением до 1000 В.
- 11.1.2 Подготовка к работе производится после установки на твердой несущей основе (стойка, столб, заграждение и т. п.) блоков, заземления и подключения проводов, прокладки и подключении кабельной сети питания и сигнализации.
 - 11.1.3 Для подготовки извещателя к работе выполнить следующие действия:
 - 1) Выбрать вид синхронизации блоков по радиолучу или проводу;
 - 2) Выбрать алгоритм обработки АЛГОРИТМ 1 или АЛГОРИТМ 2;
 - 3) произвести юстировку:
 - 4) произвести регулировку чувствительности;
 - 5) произвести проверку работоспособности.
- 11.1.4 Для выбора синхронизации по радиолучу, соединить коричневый провод кабеля БПРМ с минусом (общим) питания извещателя или оставить неподключенным.
- 11.1.5 Для выбора синхронизации по проводу, соединить коричневый провод кабеля БПРМ с плюсом питания извещателя и произвести соответствующие подключения БПРМ и БПРД (см. п. 6.2.3).
- 11.1.6 Для выбора алгоритма функционирования с расширенной ЧЗ, соединить белый провод (коричневой пары) кабеля БПРМ с минусом питания извещателя.
- 11.1.7 Для выбора алгоритма функционирования с более узкой ЧЗ, соединить белый провод (коричневой пары) кабеля БПРМ с плюсом питания извещателя.

11.2 Юстировка изделия

- 11.2.1 Операторам расположиться за пределами 3О, одному у БПРМ, а другому у БПРД, таким образом, чтобы обеспечить удобство юстировки блоков, контроль за индикаторами и возможность управления с помощью кнопок.
- 11.2.2 Выкрутить два невыпадающих винта, снять защитную крышку с тыльной стороны БПРМ и произвести визуальную юстировку, для чего сориентировать БПРД и БПРМ таким образом, чтобы их лицевые поверхности были перпендикулярны условной оси, соединяющей центры блоков.
- 11.2.3 Немного ослабить винтовые соединения «4» и «5» УЗК...(см. рис. 10.2) до возможности изменения угловых положений БПРД и БПРМ. Включить режим юстировки блоков, для чего на 3...4 секунды нажать кнопку «Упр» на БПРМ (см. рис. 11.1) и отпустить ее.
- 11.2.4 Произвести точную юстировку, для чего незначительно изменять вертикальные и горизонтальные

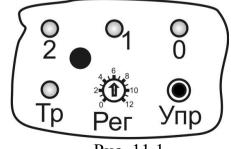


Рис. 11.1

углы БПРД и БПРМ до тех пор, пока не включится максимальное показание на индикаторах «Тр», «2», «1», «0». Состояние, когда не светится ни один индикатор, показывает, что сигнал меньше допустимого и необходимо уменьшить расстояние между БПРД и БПРМ.

- 11.2.5 После выполнения юстировки затянуть все винтовые соединения УЗК... до выпрямления пружинных шайб.
- 11.2.6 На 3...4 секунды нажать кнопку «Упр» или дождаться (~ 6 мин) автоматического завершения юстировки.
- 11.2.7 Отсчет времени (~ 6 мин) автоматического завершения юстировки начинается сразу после ее включения. В случае необходимости продления режима юстировки, выполнить п. 11.2.3.

11.3 Регулировка чувствительности

- 11.3.1 Установить регулятор «Рег» в положение «0» (см. рис.11.1).
- 11.3.2 Проверить отсутствие людей и животных на расстоянии 5 м от условной осевой линии контролируемого участка рубежа. Расположиться у БПРМ таким образом, чтобы можно было легко наблюдать за свечением индикаторов. Выдержать паузу 3...5 мин.
- 11.3.3 Подать команду оператору на пересечение 3О в положении «в рост» со скоростью около 0,5 м/с и остановиться при включении индикатора «Тр», при этом горизонтальный размер (ширину) 3О определять как удвоенное расстояние от оператора до оси 3О. При необходимости, увеличить размер 3О, вращая регулятор «Рег» по часовой стрелке, или уменьшить размер 3О, вращая регулятор «Рег» против часовой стрелки. Между подходами оператора к ЧЭ выдерживать паузы 2..3 мин., находясь в исходном положении.
- 11.3.4 Подать команду оператору пересекать контролируемый рубеж в обоих направлениях в положении «согнувшись», выдерживая между пересечениями паузы 2...3 мин. По 1°...2° вращать ось регулятора «Рег» по часовой стрелке до положения, когда начнет включаться индикатор «Тр». Создать небольшой запас, повернув ось регулятора «Рег» на 1°...2° по часовой стрелке. Скорректировать при необходимости ширину 3О, повторив п. 11.3.3.
- 11.3.5 Оператору на рубеже отойти от оси 3О на расстояние больше 5 м. Оператору у БПРМ наблюдать за индикаторами «2», «1» и «0» и не двигаться в течение нескольких минут. Индикаторы не должны самопроизвольно подсвечивать и мигать. В случае подсвечивания индикаторов, определить и удалить источник помех или уменьшить ширину 3О, для чего повторить п. 11.3.3 и п.11.3.4.

11.4 Регулировка ширины 30 с помощью КВЗ-2Т

- 11.4.1 Данная регулировка используется только при установке извещателя вдоль отражающего заграждения, включая сетчатое, с использованием телескопических кронштейнов КВЗ-2Т. (рис.11.2).
- 11.4.2 Установить длину КВЗ-2Т в среднее положение, для чего открутить соединительные бол-

Рис. 11.2

ты и, перемещая подвижную часть кронштейна, выбрать его общую длину ~ 0.75 м.

11.4.3 Проверить отсутствие людей и животных на расстоянии 5 м от условной осевой линии контролируемого участка рубежа. Расположиться у БПРМ таким образом, чтобы можно было легко наблюдать за свечением индикаторов.

- 11.4.4 Подать команду оператору на пересечение 3О в положении «в рост» со скоростью около 0,5 м/с и остановиться при включении индикатора «Тр», при этом горизонтальный размер (ширину) 3О определять как удвоенное расстояние от оператора до оси 3О. При необходимости, увеличить размер 3О, уменьшая длину КВЗ-2Т, или уменьшить размер 3О, увеличивая длину КВЗ-2Т. Между пересечениями рубежа выдерживать паузы 2..3 мин., находясь в исходном положении.
- 11.4.5 Оператору на рубеже отойти от оси 3О на расстояние больше 5 м. Оператору у БПРМ наблюдать за индикаторами «2», «1» и «0». Индикаторы не должны самопроизвольно подсвечивать и мигать. В случае подсвечивания индикаторов, определить и удалить источник помех или уменьшить ширину 3О (п. 11.4.3 и п.11.4.4).

11.5 Проверка извещателя

- 11.5.1 Оператору на рубеже отойти от БПРД на расстояние 3 м в направлении БПРМ и в 4 м от условной осевой линии контролируемого участка рубежа.
- 11.5.2 Оператору на рубеже произвести пересечение рубежа в положении «стоя» и немедленно покинуть ЧЗ (отойти от оси ЧЗ на расстояние не менее 4 м).
- 11.5.3 Повторить п. 11.4.2 на различных отрезках рубежа в положениях «стоя», «согнувшись» и «на корточках», при условии обязательного пересечения 3О телом. Оператору отходить от условной осевой линии на расстояние не менее 5 м.
- 11.5.4 После завершения проверки плотно закрыть защитную крышку на БПРМ, повторить п. 11.4.2, контролируя срабатывания на ППК.

<u>Дежурный режим устанавливается только при закрытой защитной крышке</u> <u>БПРМ, когда закрыто окно инфракрасного датчика положения крышки.</u>

Извещатель находится в дежурном режиме.

12. РЕГЛАМЕНТ ТЕХНИЧЕСКОГО ОБСЛУЖИВАНИЯ

- 12.1 Общие положения
- 12.1.1 Настоящий регламент технического обслуживания является основным документом, определяющим виды, содержание, периодичность и методику выполнения регламентных работ на извещатель.
- 12.1.2 Под техническим обслуживанием понимаются мероприятия, обеспечивающие контроль за техническим состоянием извещателя.
- 12.1.3 Своевременное проведение и полное выполнение работ по техническому обслуживанию в процессе эксплуатации является одним из важных условий поддержания извещателя в рабочем состоянии.
- 12.1.4 Техническое обслуживание извещателя предусматривает плановое выполнение комплекса профилактических работ в объеме следующих регламентов:

регламент № 1 - еженедельное техническое обслуживание;

регламент № 2 - ежемесячное техническое обслуживание;

регламент № 3 - полугодовое техническое обслуживание.

12.2. Перечень операций технического обслуживания

12.2.1 Регламент № 1:

внешний осмотр извещателя; проверка работоспособности извещателя.

12.2.2 Регламент № 2:

внешний осмотр извещателя;

проверка работоспособности извещателя;

проверка смазки элементов крепления блоков извещателя;

проверка эксплуатационной документации.

12.2.3 Регламент № 3:

внешний осмотр извещателя;

проверка работоспособности извещателя;

проверка смазки элементов крепления блоков извещателя;

проверка эксплуатационной документации;

проверка состояния соединительных кабелей.

- 12.3 Методика проведения операций технического обслуживания.
- 12.3.1 Внешний осмотр извещателя.
- 12.3.1.1 При внешнем осмотре проверить:

плотно ли закрыты крышки блоков извещателя;

отсутствие нарушения окраски, следов коррозии;

отсутствие порывов и подрезов на соединительных кабелях;

надежность крепления блоков извещателя.

- 12.3.2 Проверка работоспособности извещателя.
- 12.3.2.1 Операторам расположиться в пределах прямой видимости, одному у БПРМ, а другому у в 4...5 м от оси зоны обнаружения.
- 12.3.2.2 Оператору на рубеже осуществлять попытки преодоления рубежа охраны в различных точках. После каждой попытки оператору фиксировать выдачу сигнала тревоги. Попытки преодоления произвести через (2...3) м по всему рубежу. В режиме тревоги на панели БПРМ прерывисто светится индикатор «Тр».
 - 12.3.3 Проверка смазки элементов крепления блоков извещателя.
 - 12.3.4 Проверка эксплуатационной документации.
 - 12.3.4.1 Проверить наличие руководства.
 - 12.3.5 Проверка состояния соединительных кабелей.
 - 12.3.5.1 Отключить источник питания.
 - 12.3.5.2 Отключить все провода блоков извещателя.
- 12.3.5.3 Промыть этиловым спиртом (ГОСТ 18300-87) в соответствии с действующими нормами расхода.
- 12.3.5.4 Проверить с помощью мегомметра с напряжением до 500 В сопротивление между жилами и заземлителем. Значение должно быть не менее 0,5 МОм.
 - 12.3.5.5 Подключить все провода согласно электрической схеме и закрыть блоки.
- 12.4 Для проведения регламентных работ необходимы: ампервольтметр Ц4313 или другой прибор с характеристиками не хуже указанного; мегомметр с напряжением до 500 В; отвертки; ключ 7811-0457 ГОСТ 2839-80; пассатижи; кусачки; шанцевый инструмент; ветошь; смазка (типа К-17, ЦИАТИМ-201; технический вазелин ГОСТ 15975-70); этиловый спирт ГОСТ 18300-87; керосин.

13. ОБСЛУЖИВАНИЕ КОНТРОЛИРУЕМОГО РУБЕЖА

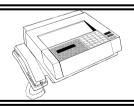
- 13.1 Обслуживание рубежа производится лицами прошедшими соответствующий инструктаж по технике безопасности.
- 13.2 Необходимо следить, чтобы в чувствительной зоне, ширина которой определяется в соответствии с п. 4.4, травяной и кустарниковый покров в 3О не превышал 0,3 м (достигается выкашиванием или каким-либо другим способом).
- 13.3 В сезоны, когда снежный покров изменяется выше допустимого предела (см. п. 10.1), необходимо расчистить снег в ЧЗ или изменить высоту установки БПРМ и БПРД. После изменения высоты установки извещателя, необходимо произвести его юстировку и настройку по изложенным выше методикам.

14. ПРАВИЛА ХРАНЕНИЯ И ТРАНСПОРТИРОВАНИЯ

- 14.1 Хранение извещателя должно осуществляться в упаковке заводаизготовителя по условиям хранения 3 (не отапливаемое хранилище) ГОСТ 15150-69. «Машины, приборы и технические изделия. Исполнение для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды в отсутствии агрессивных испарений».
- 14.2 Транспортирование извещателя в заводской упаковке должно производиться самолетом в гермоотсеке, железнодорожным транспортом в крытых вагонах, контейнерах без ограничения расстояния, автомобильным транспортом по грунтовым дорогам со скоростью 40 км/ч на расстояние до 1000 км.

Примечание. При транспортировании железнодорожным транспортом вид отправки должен быть малотоннажным.

15. ХАРАКТЕРНЫЕ НЕИСПРАВНОСТИ И МЕТОДЫ ИХ УСТРАНЕНИЯ


Наименование неисправности, внешние проявление и признаки	Вероятная причина	Метод устранения
1. При закрытой крышке БПРМ не замыкается выходное реле	1.1 Не плотно закрыта защитная крышка на тыльной стороне БПРМ	а) Плотно закрыть крышку БПРМ
2. На лицевой панели БПРМ не светится ни один индикатор	Отсутствует питание БПРМ	Подать питание
3. В режиме НАСТРОЙКА непрерывно светится индикатор «Тр»	а) Отсутствует питание БПРД б) нарушена юстировка	а) Подать питание б) произвести юстировку
	а) повышенная помеховая обста- новка	а) Выполнить указания раздела 10.1
	б) завышена чувствительность	б) Отрегулировать чув- ствительность
4. Частые ложные срабатывания	в) происходит засветка БПРМ сигналом БПРД смежного участка	в) устранить засветку или включить режим проводной синхронизации и взаимную синхронизацию смежных участков в соответствии с п. 6.3.4.6
	г) чувствительную зону пересекают животные	г) перекрыть доступ животным или уменьшить чувствительность
5. Извещатель не всегда формирует сигнал ТРЕВОГА при пересечении рубежа	а) занижена чувствительность	а) Отрегулировать чувствительность

440000, Россия, г. Пенза, Главпочтамт, а/я 3322 E.mail: info@TSO-perimetr.ru

(495) 987-22-23 (841-2) 54-12-68

